Big-Data to Support the Study of the Environmental Disaster in Mariana, MG: From VGI to Social Media Geographic Information

Revista Brasileira de Cartografia – Ano 2017

Autores desta publicação

  • BORGES, Júnia – Júnia Lúcio de Castro Borges - Ex-Bolsista de Doutorado
  • MOURA, Ana Clara M. – Prof. Ana Clara Mourão Moura - COORDENADORA
  • PAULA, Priscila L. – Priscila Lisboa de Paula - Ex-Bolsista Iniciação Científica
  • CASAGRANDE, Pedro – Prof. Pedro Benedito Casagrande - Prof. Escola de Minas UFMG
  • Palavras-chave: Big-Data; Volunteered Geographic Information; Social Media Geographic Information

Baixar uma cópia desta publicação

Documento no formato PDF
Formato do arquivo: Documento Adobe PDF
Tamanho do download: 3,140 MB

Resumo da publicação

Acesso:
http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/43982

Citação:
Big-Data to Support the Study of the Environmental Disaster in Mariana, MG: From VGI to Social Media Geographic Information. Revista Brasileira de Cartografia (2017), No 69/8, Edição Especial “Geovisualização, mídias sociais e participação cidadã: apoio à representação, análise e gestão da paisagem”: 1586-1597.
Sociedade Brasileira de Cartografia, Geodésia, Fotogrametria e Sensoriamento Remoto
ISSN: 1808-0936

Abstract (english text)

The use of Social Media Geographic Information in a planning process would improve our knowledge about local values, urban and landscape development and could support decision-making. This paper presents a case study of an environmental disaster that happened recently in one of the most important social economic areas in Brazil to understand how this type of information could be used as a systematized planning input. The authors seek to understand if it is possible to use VGI and SMGI (Volunteered Geographic Information and Social Media Geographic Information) to capture social values, such as genius loci (the essence of the place)and expectations, the values that should be considered in a disaster recovery plan. To do that, we tested an active VGI platform and passive SMGI posts’ analysis. Our best results so far relied on a proposal for image analysis from Instagram posts to separate them in the themes of “everyday life”, “landscape” and “memes”. Presenting a logic and a tool to do this classification automatically, we provide a first step to be used in big-data, as they are characterized by a big amount of data, and we can develop a first analysis in the main pictures posted by people from that area. It is a contribution to use social media to measure values and collective expectations from a place.

Autores do laboratório

  • Prof. Ana Clara Mourão Moura
    Prof. Ana Clara Mourão Moura
    COORDENADORA
  • Júnia Lúcio de Castro Borges
    Júnia Lúcio de Castro Borges
    Ex-Bolsista de Doutorado
  • Priscila Lisboa de Paula
    Priscila Lisboa de Paula
    Ex-Bolsista Iniciação Científica
  • Prof. Pedro Benedito Casagrande
    Prof. Pedro Benedito Casagrande
    Prof. Escola de Minas UFMG